organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Benzylidene-*o*-(diphenylphosphino)aniline

Aike Li, Jianxin Chen,* Zhongshui Li, Wenjie Zhang and Meiping Zhu

College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China Correspondence e-mail: jxchen_1964@163.com

Received 27 August 2007; accepted 4 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.163; data-to-parameter ratio = 18.1.

The title compound, $C_{25}H_{20}NP$, is a Schiff base containing triphenylphosphine. The molecule has a *trans* configuration about the C—N double bond [1.266 (3) Å]. Intermolecular π - π interactions (~3.61 Å) are pronounced in the crystal structure.

Related literature

For related literature, see: Braunstein & Naud (2001); Helmchen & Pfaltz (2000); Li *et al.* (2005); Papathanasiou *et al.* (1997); Reddy *et al.* (2001); Slone *et al.* (1999); Speiser & Braunstein (2004); Wang & Jin (2005); Yang *et al.* (2006).

Experimental

Crystal data $C_{25}H_{20}NP$ $M_r = 366.40$

Monoclinic, $P2_1/c$ a = 15.076 (3) Å

b = 6.6127 (13) A	
c = 20.297 (4) Å	
$\beta = 98.46 \ (3)^{\circ}$	
V = 2001.5 (7) Å ³	
$\mathbf{Z} = 4$	

Data collection

Rigaku Weissenberg IP	17296 measured reflections
diffractometer	4416 independent reflections
Absorption correction: ψ scan	2664 reflections with $I > 2\sigma(I)$
(North et al., 1968)	$R_{\rm int} = 0.054$
$T_{\min} = 0.979, \ T_{\max} = 0.984$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	244 parameters
$wR(F^2) = 0.163$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
4416 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.15 \text{ mm}^{-1}$

 $0.18 \times 0.12 \times 0.11$ mm

T = 293 (2) K

Data collection: *TEXSAN* (Molecular Structure Corporation, 1998); cell refinement: *TEXSAN*; data reduction: *TEXSAN*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXL97*; software used to prepare material for publication: *SHELXL97*.

We are grateful for financial support from the Natural Science Foundation of Fujian Province, China (2007J0216 and U0750004), and the Education Commission Foundation of Fujian Province, China (JB05309).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2389).

References

Braunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. 40, 680-699.

- Helmchen, G. & Pfaltz, A. (2000). Acc. Chem. Res. 33, 336-345.
- Li, L. Z., Zhao, C., Xu, T., Ji, H. W., Yu, Y. H., Guo, G. Q. & Chao, H. (2005). J. Inorg. Biochem. 99, 1076–1082.
- Molecular Structure Corporation (1998). *TEXSAN*. Version 1.9. Molecular Structure Corporation, The Woodlands, Texas, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Papathanasiou, P., Salem, G., Waring, P. & Willis, A. C. (1997). J. Chem. Soc. Dalton Trans. pp. 3435–3443.
- Reddy, K. R., Surekha, K., Lee, G. H., Peng, S. M., Chen, J. T. & Liu, S. T. (2001). Organometallics, 20, 1292–1299.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Slone, C. S., Weinberger, D. A. & Mirkin, C. A. (1999). Prog. Inorg. Chem. 48, 233–250.
- Speiser, F. & Braunstein, P. (2004). Organometallics, 23, 2633-2640.
- Wang, H. Y. & Jin, G. X. (2005). Eur. J. Inorg. Chem. pp. 1665-1670.
- Yang, K.-B., Lin, L.-R. & Huang, R.-B. (2006). Acta Cryst. E62, o2440-o2441.

Acta Cryst. (2007). E63, o4020 [doi:10.1107/S1600536807043358]

N-Benzylidene-o-(diphenylphosphino)aniline

A. Li, J. Chen, Z. Li, W. Zhang and M. Zhu

Comment

Schiff base ligands have various applications in the fields of synthesis and catalysis, and exhibit biological activity (Wang *et al.*, 2005; Speiser *et al.*, 2004). At the same time P, N ligands have attracted increasing recent attention because of their bonding versatility with a metal center and the relative ease with which the electronic and steric properties of the donor atoms can be modified (Braunstein *et al.*, 2001; Slone *et al.*, 1999; Helmchen *et al.*, 2000), but few Schiff bases containing phosphorus and nitrogen have been reported (Yang *et al.*, 2006). A Schiff base containing P, N may be expected to be a useful bidentate ligand with new properties, because triphenylphosphine is a well known ligand for coordination compounds. Here we present the title compound (I), a useful Schiff base ligand containing phosphine-imine.

In compound (I), the bond lengths of P1—C1, P1—C13, P1—C1, N1—C25 and N1—C2 are 1.830 (2), 1.831 (2), 1.830 (2), 1.266 (3) and 1.409 (3) Å, respectively. The aromatic ring 1 (C1—C6) is tilted with rings 2 (C7—C12), 3 (C13—C18) and 4 (C19—C24). The dihedral angle of ring 2 and ring 3 is 81.65 (10)°, the dihedral angles of ring 1 with rings 2, 3, 4 are 74.50 (8), 77.73 (7), and 26.61 (15)°, respectively (Fig. 1). The π - π stacking interactions support the crystal packing with distances of about 3.61 Å (Fig. 2).

Experimental

All reagents were of AR grade available commercially and used without further purification. The complex of o-(diphenylphosphino)-*N*-benzaldimine was prepared by simple condensation of o-(diphenylphosphino)-aniline (Reddy *et al.*, 2001} with excess benzaldehyde. o-(Diphenylphosphino)benzenamine was prepared according to the literature (Papathanasiou *et al.*, 1997). To freshly distilled benzaldehyde (16 ml, 0.15 mol) was added o-(diphenylphosphino)-aniline (6 g, 0.02 mol) under nitrogen, and the mixture was stirred at room temperature under nitrogen for 6–7 h. The reaction mixture was poured into cold methanol and kept at low temperature overnight. The desired ligand P, N was crystallized as a white solid. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of ethanol solution.

Refinement

H atoms were located geometrically and refined using a riding model with C—H = 0.93 Å, and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. The molecule has a *trans* configuration about the C25=N1 double bond. All H atoms were omitted for clarity.

Fig. 2. Packing diagram of (I) showing the π - π stacking along the *b* axis.

N-Benzylidene-o-(diphenylphosphino)aniline

Crystal data	
C ₂₅ H ₂₀ NP	$F_{000} = 772$
$M_r = 366.40$	$D_{\rm x} = 1.216 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4416 reflections
a = 15.076 (3) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 6.6127 (13) Å	$\mu = 0.15 \text{ mm}^{-1}$
c = 20.297 (4) Å	T = 293 (2) K
$\beta = 98.46 \ (3)^{\circ}$	Prism, colourless
$V = 2001.5 (7) \text{ Å}^3$	$0.18 \times 0.12 \times 0.11 \text{ mm}$
Z = 4	

Data collection

Rigaku Weissenberg IP diffractometer	4416 independent reflections
Radiation source: fine-focus sealed tube	2664 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.054$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
scintillation counter scans	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$h = -19 \rightarrow 19$
$T_{\min} = 0.979, \ T_{\max} = 0.984$	$k = -8 \rightarrow 7$
17296 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.163$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0897P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

<i>S</i> = 1.02	$(\Delta/\sigma)_{max} = 0.015$
4416 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
244 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.20484 (4)	0.75168 (8)	0.17396 (3)	0.04508 (19)
N1	0.18326 (12)	1.0677 (3)	0.27147 (9)	0.0464 (4)
C2	0.10879 (14)	1.0673 (3)	0.22061 (11)	0.0426 (5)
C1	0.11152 (13)	0.9309 (3)	0.16779 (11)	0.0415 (5)
C7	0.30187 (14)	0.9120 (3)	0.16743 (11)	0.0474 (5)
C6	0.03873 (15)	0.9284 (3)	0.11698 (12)	0.0495 (5)
H6A	0.0399	0.8428	0.0808	0.059*
C13	0.18483 (14)	0.6353 (3)	0.09123 (11)	0.0460 (5)
C3	0.03371 (15)	1.1869 (3)	0.22255 (12)	0.0518 (6)
H3A	0.0318	1.2740	0.2583	0.062*
C14	0.12690 (16)	0.4726 (3)	0.08273 (13)	0.0556 (6)
H14A	0.1007	0.4263	0.1186	0.067*
C4	-0.03791 (15)	1.1780 (4)	0.17219 (13)	0.0563 (6)
H4A	-0.0882	1.2583	0.1739	0.068*
C8	0.29742 (16)	1.1050 (4)	0.14107 (14)	0.0614 (7)
H8A	0.2418	1.1607	0.1250	0.074*
C5	-0.03491 (15)	1.0496 (4)	0.11909 (13)	0.0555 (6)
H5A	-0.0828	1.0449	0.0846	0.067*
C15	0.10727 (18)	0.3773 (4)	0.02167 (14)	0.0637 (7)
H15A	0.0674	0.2691	0.0168	0.076*
C25	0.21333 (15)	1.2371 (3)	0.29366 (12)	0.0506 (5)
H25A	0.1866	1.3548	0.2752	0.061*
C19	0.28912 (15)	1.2531 (4)	0.34766 (12)	0.0541 (6)
C16	0.1455 (2)	0.4401 (4)	-0.03098 (15)	0.0702 (7)
H16A	0.1326	0.3742	-0.0718	0.084*
C12	0.38576 (16)	0.8340 (4)	0.19137 (14)	0.0639 (7)
H12A	0.3907	0.7053	0.2100	0.077*

C18	0.22344 (18)	0.6974 (4)	0.03667 (14)	0.0635 (7)
H18A	0.2634	0.8055	0.0410	0.076*
C17	0.2034 (2)	0.6011 (4)	-0.02407 (15)	0.0754 (8)
H17A	0.2292	0.6455	-0.0604	0.090*
C20	0.34628 (19)	1.0935 (4)	0.36478 (15)	0.0711 (8)
H20A	0.3392	0.9737	0.3406	0.085*
C9	0.3737 (2)	1.2162 (4)	0.13814 (16)	0.0745 (8)
H9A	0.3695	1.3458	0.1202	0.089*
C10	0.45611 (19)	1.1356 (5)	0.16167 (17)	0.0805 (9)
H10A	0.5078	1.2108	0.1598	0.097*
C24	0.30210 (18)	1.4321 (5)	0.38267 (17)	0.0818 (9)
H24A	0.2654	1.5426	0.3700	0.098*
C23	0.3692 (2)	1.4476 (6)	0.4362 (2)	0.1007 (12)
H23A	0.3772	1.5679	0.4601	0.121*
C11	0.46217 (18)	0.9470 (6)	0.18761 (18)	0.0820 (9)
H11A	0.5182	0.8925	0.2031	0.098*
C21	0.4143 (2)	1.1115 (6)	0.41809 (18)	0.0941 (11)
H21A	0.4537	1.0046	0.4295	0.113*
C22	0.4237 (3)	1.2881 (7)	0.45426 (18)	0.1019 (12)
H22A	0.4677	1.2981	0.4914	0.122*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0462 (3)	0.0455 (3)	0.0424 (3)	0.0021 (2)	0.0029 (2)	0.0013 (2)
N1	0.0466 (10)	0.0520 (10)	0.0405 (11)	-0.0043 (8)	0.0061 (8)	-0.0059 (8)
C2	0.0417 (10)	0.0456 (11)	0.0410 (12)	-0.0054 (9)	0.0078 (9)	-0.0008 (9)
C1	0.0407 (10)	0.0444 (11)	0.0398 (12)	-0.0050 (9)	0.0072 (9)	0.0006 (9)
C7	0.0437 (11)	0.0524 (12)	0.0447 (13)	0.0046 (10)	0.0024 (10)	-0.0068 (9)
C6	0.0490 (12)	0.0534 (12)	0.0449 (13)	0.0032 (10)	0.0025 (10)	-0.0059 (10)
C13	0.0484 (11)	0.0403 (11)	0.0485 (13)	0.0042 (10)	0.0045 (10)	0.0001 (9)
C3	0.0518 (13)	0.0522 (12)	0.0528 (15)	-0.0025 (11)	0.0122 (11)	-0.0100 (10)
C14	0.0640 (14)	0.0505 (12)	0.0506 (15)	-0.0009 (12)	0.0026 (11)	0.0040 (10)
C4	0.0463 (12)	0.0558 (13)	0.0670 (17)	0.0046 (11)	0.0091 (11)	-0.0031 (12)
C8	0.0484 (13)	0.0574 (14)	0.0785 (19)	0.0012 (11)	0.0092 (12)	0.0069 (13)
C5	0.0428 (11)	0.0609 (14)	0.0593 (16)	0.0015 (11)	-0.0038 (11)	-0.0020 (11)
C15	0.0716 (16)	0.0532 (13)	0.0629 (18)	-0.0105 (12)	-0.0016 (14)	-0.0071 (12)
C25	0.0508 (12)	0.0521 (12)	0.0485 (13)	-0.0039 (10)	0.0061 (10)	-0.0041 (10)
C19	0.0465 (12)	0.0651 (14)	0.0509 (14)	-0.0106 (11)	0.0080 (10)	-0.0114 (11)
C16	0.0850 (18)	0.0693 (16)	0.0551 (17)	-0.0018 (15)	0.0057 (15)	-0.0158 (13)
C12	0.0481 (13)	0.0698 (15)	0.0704 (18)	0.0087 (13)	-0.0032 (12)	0.0001 (14)
C18	0.0727 (16)	0.0622 (15)	0.0589 (17)	-0.0140 (13)	0.0213 (13)	-0.0094 (12)
C17	0.091 (2)	0.0811 (19)	0.0590 (18)	-0.0095 (16)	0.0285 (16)	-0.0103 (14)
C20	0.0694 (16)	0.0737 (17)	0.0652 (19)	-0.0076 (14)	-0.0066 (14)	-0.0064 (14)
С9	0.0690 (17)	0.0669 (16)	0.090 (2)	-0.0141 (14)	0.0198 (16)	0.0011 (15)
C10	0.0553 (16)	0.099 (2)	0.088 (2)	-0.0258 (17)	0.0118 (15)	-0.0127 (18)
C24	0.0542 (15)	0.089 (2)	0.100 (2)	-0.0102 (14)	0.0059 (15)	-0.0431 (18)
C23	0.074 (2)	0.125 (3)	0.100 (3)	-0.026 (2)	0.0045 (19)	-0.063 (2)

C11	0.0425 (14)	0.109 (2)	0.093(2)	0.0000(15)	0.0021(14)	-0.0030(19) 0.007(2)
C21	0.078(2)	0.102(2)	0.091(3)	-0.0088(18)	-0.0237(18)	0.007 (2)
C22	0.084 (2)	0.140 (3)	0.068 (2)	-0.031 (2)	-0.01/2 (18)	-0.020 (2)
Geometric param	neters (Å, °)					
P1—C7		1.827 (2)	C25—	C19	1.46	6 (3)
P1—C13		1.831 (2)	C25—	H25A	0.93	00
P1—C1		1.830 (2)	C19—	C20	1.37	5 (4)
N1—C25		1.266 (3)	C19—	C24	1.37	9 (3)
N1—C2		1.409 (3)	C16—	C17	1.37	0 (4)
C2—C3		1.386 (3)	C16—	H16A	0.93	00
C2—C1		1.406 (3)	C12—	C11	1.38	4 (4)
C1—C6		1.391 (3)	C12—	H12A	0.93	00
С7—С8		1.382 (3)	C18—	C17	1.38	1 (4)
C7—C12		1.386 (3)	C18—	H18A	0.93	00
C6—C5		1.375 (3)	C17—	H17A	0.93	00
С6—Н6А		0.9300	C20—	C21	1.38	2 (4)
C13—C14		1.381 (3)	C20—	H20A	0.93	00
C13—C18		1.387 (3)	С9—С	10	1.37	1 (4)
C3—C4		1.374 (3)	С9—Н	9A	0.93	00
С3—НЗА		0.9300	C10—	C11	1.35	2 (4)
C14—C15		1.383 (3)	C10—	H10A	0.93	00
C14—H14A		0.9300	C24—	C23	1.37	5 (4)
C4—C5		1.378 (3)	C24—	H24A	0.93	00
C4—H4A		0.9300	C23—	C22	1.35	3 (5)
С8—С9		1.374 (4)	C23—	H23A	0.93	00
C8—H8A		0.9300	C11—	H11A	0.93	00
С5—Н5А		0.9300	C21—	C22	1.37	6 (5)
C15—C16		1.352 (4)	C21—	H21A	0.93	00
C15—H15A		0.9300	C22—	H22A	0.93	00
C7—P1—C13		101.71 (10)	C20—	C19—C24	119.:	5 (3)
C7—P1—C1		103.59 (10)	C20—	C19—C25	121.	6 (2)
C13—P1—C1		100.85 (10)	C24—	C19—C25	118.	9 (2)
C25—N1—C2		117.86 (19)	C15—	C16—C17	119.	8 (3)
C3—C2—N1		123.0 (2)	C15—	C16—H16A	120.	1
C3—C2—C1		120.2 (2)	C17—	C16—H16A	120.	1
N1—C2—C1		116.76 (18)	C11—	С12—С7	120.	3 (3)
C6—C1—C2		117.67 (19)	C11—	C12—H12A	119.9	9
C6—C1—P1		123.90 (16)	С7—С	12—H12A	119.9	9
C2—C1—P1		118.15 (16)	C17—	C18—C13	120.	9 (2)
C8—C7—C12		118.0 (2)	C17—	C18—H18A	119.	6
C8—C7—P1		124.76 (17)	C13—	C18—H18A	119.	6
C12—C7—P1		117.25 (18)	C16—	C17—C18	120.	1 (3)
C5—C6—C1		121.5 (2)	C16—	С17—Н17А	119.9	9
С5—С6—Н6А		119.3	C18—	С17—Н17А	119.9	9
C1—C6—H6A		119.3	C19—	C20—C21	119.3	8 (3)
C14—C13—C18		117.6 (2)	C19—	C20—H20A	120.	1
C14—C13—P1		117.25 (18)	C21—	C20—H20A	120.	1

C18—C13—P1	125.15 (18)	C10—C9—C8	119.9 (3)
C4—C3—C2	120.7 (2)	С10—С9—Н9А	120.0
С4—С3—Н3А	119.7	С8—С9—Н9А	120.0
С2—С3—Н3А	119.7	C11—C10—C9	120.0 (3)
C15—C14—C13	121.0 (2)	C11—C10—H10A	120.0
C15—C14—H14A	119.5	С9—С10—Н10А	120.0
C13—C14—H14A	119.5	C19—C24—C23	120.2 (3)
C5—C4—C3	119.7 (2)	C19—C24—H24A	119.9
С5—С4—Н4А	120.2	C23—C24—H24A	119.9
C3—C4—H4A	120.2	C22—C23—C24	120.2 (3)
C9—C8—C7	121.2 (2)	С22—С23—Н23А	119.9
С9—С8—Н8А	119.4	C24—C23—H23A	119.9
С7—С8—Н8А	119.4	C10-C11-C12	120.7 (3)
C4—C5—C6	120.2 (2)	C10-C11-H11A	119.7
С4—С5—Н5А	119.9	C12—C11—H11A	119.7
С6—С5—Н5А	119.9	C22—C21—C20	119.8 (3)
C16—C15—C14	120.6 (2)	C22—C21—H21A	120.1
C16—C15—H15A	119.7	C20—C21—H21A	120.1
C14—C15—H15A	119.7	C_{23} C_{22} C_{21}	120.4 (3)
N1—C25—C19	121.9 (2)	C23—C22—H22A	119.8
N1—C25—H25A	119.0	C21—C22—H22A	119.8
C19—C25—H25A	119.0		
C25—N1—C2—C3	-45.7 (3)	P1—C7—C8—C9	179.8 (2)
C25—N1—C2—C1	137.2 (2)	C3—C4—C5—C6	1.1 (4)
C3—C2—C1—C6	3.0 (3)	C1—C6—C5—C4	0.2 (4)
N1—C2—C1—C6	-179.87 (19)	C13—C14—C15—C16	0.9 (4)
C3—C2—C1—P1	-171.27 (16)	C2—N1—C25—C19	178.46 (19)
N1—C2—C1—P1	5.9 (2)	N1-C25-C19-C20	17.8 (4)
C7—P1—C1—C6	117.68 (19)	N1—C25—C19—C24	-161.1 (3)
C13—P1—C1—C6	12.7 (2)	C14—C15—C16—C17	-0.8 (4)
C7—P1—C1—C2	-68.48 (18)	C8—C7—C12—C11	-1.0 (4)
C13—P1—C1—C2	-173.49 (16)	P1	179.6 (2)
C13—P1—C7—C8	84.7 (2)	C14—C13—C18—C17	0.9 (4)
C1—P1—C7—C8	-19.7 (2)	P1-C13-C18-C17	-179.3 (2)
C13—P1—C7—C12	-96.0 (2)	C15—C16—C17—C18	0.8 (5)
C1—P1—C7—C12	159.66 (19)	C13—C18—C17—C16	-0.8 (4)
C2—C1—C6—C5	-2.2 (3)	C24—C19—C20—C21	2.0 (4)
P1	171.66 (18)	C25—C19—C20—C21	-176.9 (3)
C7—P1—C13—C14	167.16 (17)	C7—C8—C9—C10	0.0 (5)
C1—P1—C13—C14	-86.34 (18)	C8—C9—C10—C11	0.1 (5)
C7—P1—C13—C18	-12.6 (2)	C20—C19—C24—C23	-2.9 (5)
C1—P1—C13—C18	93.9 (2)	C25—C19—C24—C23	176.0 (3)
N1—C2—C3—C4	-178.8 (2)	C19—C24—C23—C22	0.9 (6)
C1—C2—C3—C4	-1.8 (3)	C9—C10—C11—C12	-0.7 (5)
C18—C13—C14—C15	-0.9 (4)	C7—C12—C11—C10	1.1 (5)
P1-C13-C14-C15	179.26 (19)	C19—C20—C21—C22	0.9 (5)
C2—C3—C4—C5	-0.3 (4)	C24—C23—C22—C21	2.1 (6)
C12—C7—C8—C9	0.5 (4)	C20-C21-C22-C23	-3.0 (6)

